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Four methods of varying complexity to investigate jet instability were tested on a plane jet and com-
pared with CFD results. A unified treatment that includes the acoustic excitation in an incompressible
simulation was developed. It turned out that the more sophisticated methods have no real advan-
tage over the well-established Orr-Sommerfeld and Rayleigh equations. A new mode with extremely
high growth rates in the vicinity of the nozzle exit was discovered. Published by AIP Publishing.
https://doi.org/10.1063/1.4993558

I. INTRODUCTION

The physical modeling of flue instruments is a challeng-
ing task. Although the research began in the late 19th century,
many aspects are still unclear. An excellent review of recent
lumped models was written by Fabre and Hirschberg.8 They
presented various techniques and attempts to describe the
hydrodynamic amplification of vorticity inside the jets, the
sound generation process, and the receptivity of the jet. They
draw the conclusion that although the lumped models explain
some global observations, they do not fully reveal the physi-
cal mechanisms. In our paper, an attempt is made to improve
these models focusing only on the growth of perturbations in
the initial linear domain of the jet.

Rayleigh21 was the first author to describe the growth of
perturbation velocity in jets. He derived the famous Rayleigh
equation and solved it for a discontinuous velocity profile
that is a crude model of the shear layer. The next essential
step in the description of planar jets was the work of Bick-
ley.4 He derived an analytical formula (Bickley-profile) for the
velocity field generated by an infinitely long line momentum
source, assuming self-similarity. The validity of the Bickley
velocity profile was confirmed by experiments. Later, Savic23

solved the Rayleigh equation for the Bickley profile neglect-
ing the streamwise variation of the flow field. Curle6 and
Tatsumi and Kakutani27 solved the Orr-Sommerfeld equation
and published the neutral stability curve for the same veloc-
ity profile. Sato22 also solved the Orr-Sommerfeld equation
but he used the mean velocity profiles from his measure-
ments instead of the theoretical Bickley-profile. Later, several
attempts were made to extend the Orr-Sommerfeld equation.
Varapaev et al.30 derived a modified Orr-Sommerfeld equa-
tion, which considered the transversal velocity component,
using the stream function. A similar concept was followed
by Bajaj and Garg,3 who also took into account the transver-
sal mean velocity. The investigation of an arbitrary flow needs
less effort by their method since instead of the stream func-
tion they used the mean transversal velocity profile in the
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equation, which can be easily exported from numerical simu-
lations. Garg10 continued the research and developed a weakly
nonparallel model that took into consideration the effects
of the transversal velocity component and the streamwise
variations of the basic flow, the disturbance amplitude, the
wave number, and the spatial growth rate. In this model, the
growth rate depends not only on the streamwise co-ordinates
but also on transversal co-ordinate and the particular flow
variable.

Fletcher and Thwaites9 set up a model in which they
defined the critical distance xc. Before this distance, the growth
can be modeled with Rayleigh’s method of the discontinu-
ous shear layer and beyond that with the solution of Savic
for the Bickley-profile. Actually, both solutions are based on
the Rayleigh-equation, which neglects viscosity for the per-
turbation modes and is valid at high Reynolds-number (for
the Bickley-jet Re > 2006). Motivated by organ pipe jet
research, Nolle19 solved the Rayleigh equation numerically for
the Bickley jet and validated it by measurements. He suggested
that the growth of disturbances should be modeled spatially
instead of temporally. He also proposed an analytical formula
to describe jets in the vicinity of the nozzle, whose stability
properties were investigated in our previous work.17 Atassi and
Lueptow2 developed a non-linear “long wave” model. Their
model describes the initially exponential and further down-
stream linear growth of perturbations. The paper deals with
asymmetric mean velocity profiles as well, approximated by
piecewise linear functions. In the same year, Jo and Kim14

studied the growth of the perturbation field in the vicinity of the
orifice. They introduced a new non-dimensionalization tech-
nique. They determined the location from which the Bickley
profile describes flows with parabolic and top-hat exit velocity
profiles well. They also compared results of local and non-local
stability analysis. They found that local techniques provide
almost identical results, if the Reynolds-number (defined in
the same way as here) is larger than 100. However, the pres-
ence of the wall around the jet was neglected in their work.
It probably leads to the underestimation of the growth of
varicose modes.17 This can be a problem when modeling an
instrument with a short flue channel, where these modes are
observable.24
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Dequand et al.7 modeled a whistle with a second order
differential equation as a Helmholtz resonator. The aeroa-
coustic sources were determined in two different ways: with
the so-called jet-drive model and the discrete vortex model.
They found very good agreement with their experiments with
the first model when the labium was placed far from the
orifice and with the second model when that distance was
short. In both cases, they neglected the growth of the pertur-
bations in the jet. Furthermore, they fitted some parameters or
used from previous experiments, for example, they assumed
a constant phase speed of the vortices in the case of the
discrete vortex model. Paál and Vaik20 carried out numeri-
cal simulations on the edge-tone and were able to reproduce
various stages of the edge-tone, observed previously in their
experiments.

Kobayashi et al.16 carried out LES simulations and ana-
lyzed the effects of the acoustic and the hydrodynamic field on
each other by Howe’s energy corollary method.13 They con-
cluded that the sound is generated mainly in the second half of
the oscillating jet in flue instruments. This means that if the per-
turbation field of the jet is modeled properly, the emitted sound
can be predicted well, even if the wedge is ignored. Of course,
such calculations are only useful, if the hydrodynamic feed-
back can be neglected. The next step to develop such a model
was made by Takahashi et al.26 They approximated the hydro-
dynamic velocity field with their own wavy jet model in which
they slightly modify the Bickley profile by prescribing an ana-
lytical wavy shape of the fluctuating jet at the centerline. They
modeled the growth of the hydrodynamic perturbation field
with Fletcher’s exponential models9 with the common empiri-
cal assumptions so that the non-dimensional phase speed is 0.5
and the growth rate is equal to the wave number. The acoustic
field was approximated by a single plane wave whose parti-
cle velocity has only a transversal component. They compared
Howe’s energy corollary integral at different domains in the
mouth of the aperture and found a good agreement between
their model and the result of a CFD simulation if they approx-
imated the exponential growth by a Taylor series up to a cubic
polynomial. Vaik et al.29 made a thorough literature survey
on how the frequency and the convection velocity can be esti-
mated in the edge-tone and they also give a formula based on
their previous experiments and simulation.28 They found the
phase velocity to vary between 1.58 and 0.19 over the stream-
wise distance which casts doubt on the usability of a constant
value.

Jet modeling can be attacked by the previously mentioned
linear stability analysis. It can provide disturbance fields with
varying growth rates and also space-dependent phase veloci-
ties. Of course, this approach has the deficiency that it cannot
model the hydrodynamic feedback in an edge-tone or in a flue
instrument without further extensions.

New stability investigation methods were developed in
the last few years. The parabolic stability equation12 seems
to be a promising method to model perturbations in the edge
tone. It was applied to an axisymmetric jet by Garnaud et al.11

However, the computation time is significantly higher here
than that with the above-mentioned methods. If the number of
assumptions is further reduced, the global stability methods
are obtained. A comprehensive review about these techniques

was written by Chomaz.5 They are powerful and sophisticated
techniques but at the same time they need ample computa-
tional resources, which render their applicability in some flue
instruments difficult, where the jet should be modeled in a wide
range of frequencies.

We believe that if the modes of both the acoustic and
hydrodynamic fields are calculated properly, then the interac-
tion between them can be described. In this paper, we focus
only on the hydrodynamic modes and in further research,
we would like to take into account their interaction with
acoustic waves using adjoint operators. The hydrodynamic
modes are obtained by four different approaches. They,
together with their solution method, are presented in Sec. II.
In Sec. III, the model for acoustically excited incompress-
ible flows will be presented and validated in a case when
an acoustic wave passes over a no-slip wall. After that the
CFD simulations of the base flow and the excited jet are
described. In Sec. V, the results on the comparison of the
different models with each other and with the CFD simula-
tions are presented. Finally, concluding remarks are made in
Sec. VI.

II. STABILITY EQUATIONS AND THEIR SOLUTION
METHODS

In this paper, application of four different linear stability
investigation methods on the plane jet are compared with each
other. All of them are based on linearization of the continuity
and the Navier-Stokes equations around a basic flow. The prob-
lem can be simplified, if a wavelike perturbation is assumed
which has the following form in most of the investigated cases
(except for the WKJB approximation):

ũic,y(x, y, t) = C0φ(y)ei(αx−ωt), (1)

or if the variation of the wave number is taken into account

ũic,y(x, y, t) = C0φ(y)ei(∫ α(x)dx−ωt), (2)

where ũic,y is the non-dimensional incompressible pertur-
bation velocity field, C0 is a constant, φ(y) is the eigen-
function, α is the non-dimensional wave number, ω is
the non-dimensional angular frequency, x and y are non-
dimensional co-ordinates, and t is the non-dimensional time.
[The non-dimensionalization is defined later by Eq. (60).]
This assumption leads to boundary value-eigenvalue problems
of four different differential equations, namely: the Rayleigh
equation, the Orr-Sommerfeld (OS) equation, its modifica-
tion taking the transversal velocity component of the base
flow into account, here called the Bajaj-Garg (BG) equa-
tion.3 The last one is the extension of the OS equation,
in which the problem is solved by the Wentzel–Kramers–
Jeffreys-Brillouin (WKJB) approximation also known as
the multi-scale method. It will be introduced briefly in
Sec. II C.

A. Rayleigh equation

The Rayleigh equation (3) is the inviscid perturbation
equation in fluid dynamics for a viscous or inviscid basic flow.

(αU − ω)(φ′′ − α2φ) − αU ′′φ = 0, (3)
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where y is the transversal co-ordinate, α is the wave num-
ber, φ(y) is the amplitude of the perturbation velocity in the
transversal direction, U(y) is the streamwise component of
the basic flow, and �′ is the derivative with respect to y. All
variables are non-dimensional. The problem is an eigenvalue
problem. The proper eigenvalue pairs α ∈ C and ω ∈ C
fulfill the boundary conditions. These boundary conditions
were in our case φ(0) = 0, representing sinuous modes and
φ(y → ∞) = 0 meaning that the perturbation vanishes far
from the centerline.

The problem is solved by a similar technique to the com-
pound matrix method (CMM) which was originally applied
by Ng and Reid18 for the Orr-Sommerfeld equation and used
here for the other equations, too. The idea is outlined only
briefly. We transform our equation to be able to prescribe
boundary conditions in the far field. Then the dispersion rela-
tion is obtained which ensures that the boundary condition
is fulfilled at the centerline. The proper eigenvalue pairs of
the problem (α, ω) have to be determined to satisfy that rela-
tion. During the solution, the integration of the differential
equation is started from infinity (numerically far enough) and
then the dispersion relation is evaluated at the centerline. The
difference between the prescribed value and the actual value
should be minimized by changing the eigenvalues by any root
finding technique, e.g., the Newton-Raphson iteration method.
If the proper eigenvalues are found, the dispersion relation
is fulfilled and the iteration is finished. This technique to
solve the boundary value problem is known as the shooting
method.

The method is applied to the Rayleigh equation in the
following way. Equation (3) can be rewritten in the form

φ′′ + a1φ
′ + a2φ = 0, (4)

where a1 = 0 and a2 = �α2
� (αU ′′)/(αU � ω) and its general

solution is
φ = C1φ1 + C2φ2. (5)

At infinity the equation takes the form, since U(y → ∞) →
0, U ′′(y → ∞)→ 0,

φ′′ − α2φ = 0, (6)

and the solution can be obtained as

φ∞ = C1,∞eλ1y + C2,∞eλ2y, (7)

where λ1,2 = ±α, and let φ1 ∼ eλ1y and φ2 ∼ eλ2y. For a free
shear flow, the perturbation velocity is assumed to be zero as
y tends to infinity,

lim
y→∞

φ = lim
y→∞

φ′ = 0. (8)

This can be fulfilled only if C1,∞ = 0 and also C1 = 0, then the
solution simplifies to

φ = C2φ2. (9)

Let us transcribe the second-order differential equation
into a first order differential equation system

[
φ′′

φ′

]
=

[
−a1−a2

1 0

] [
φ′

φ

]
(10)

or
φ′ = Aφ, (11)

where A is the coefficient matrix. If we want to prescribe
boundary conditions as y → ∞, then we have to normalize
the variable φ with eλ2y, which will be denoted with η,

η B
φ

eλ2y
. (12)

The new equation system can be obtained as

η ′ =
φ′

eλ2y
− λ2

φ

eλ2y
= (A − λ2I)η. (13)

The initial conditions can be calculated from Eq. (9) as

η∞ =

[
1
λ2

]
. (14)

The boundary conditions in the far-field (y → ∞) are ful-
filled automatically, if the integration is initialized with these
values. The boundary conditions in the near-field (y = 0) have
to be enforced, that is, the (α, ω) eigenvalue pairs have to be
determined. The symmetric boundary condition φ′(0) = 0 can
be expressed with the new variables as

D(α,ω) = η1(0) = 0, (15)

where η1 is the first component of η. This equation is the
dispersion relation of the problem.

B. Orr-Sommerfeld and Bajaj-Garg equations

The Orr-Sommerfeld equation can be obtained if we
neglect the streamwise variation and the transversal and span-
wise components of the basic flow. It reads in the 2D and
non-dimensional form

φ(iv) − 2α2φ′′ + α4φ = iRe
{
(αU − ω)(φ′′ − α2φ) − αU ′′φ

}
,

(16)

where Re is the Reynolds-number which will be defined in
Sec. IV. A similar equation can be derived, if the transversal
velocity component (V ) of the basic flow is not neglected,
which was derived by Bajaj and Garg.3 Both equations can be
written in the form

φ(iv) = a1φ
′′′ + a2φ

′′ + a3φ
′ + a4φ, (17)

whose coefficients can be found in Table I. If V = 0, both
equations are the same.

The solution method is similar to the previous case. It will
be introduced here briefly, for further description, we refer to
the study of Nagy and Paál17 and the original studies of Ng and
Reid18 and Sengupta.25 The fourth order equation is rewritten
as a first order differential equation system, transformed into
the compound variables η and then normalized (η̃) to be able to
prescribe boundary conditions at infinity. The final differential
equation system will be

η̃ ′ =



b 1 0 0 0 0
0 b 1 1 0 0
a3 a2 a1 + b 0 1 0
0 0 0 b 1 0
−a4 0 0 a2 a1 + b 1

0 −a4 0 −a3 0 a1 + b



η̃, (18)
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TABLE I. The coefficients for the OS equation and the BG equation in (17).

Coefficients OS equation BG equation

a1 0 Re V
a2 2α2 + iRe(αU −ω) 2α2 + iRe(αU −ω)
a3 0 −(Re V ′′ + α2 Re V )
a4 −(α4 + αRe (−iαω + iα2U + i U′′)) −(α4 + αRe (−iαω + iα2U + αV ′ + i U′′))

where Q =
√
α2 + iRe(αUinf − ω), b = α + Q, and Uinf =

U(y → ∞). The initial conditions are at infinity

η̃∞ B



1

−(α + Q)

α2 + αQ + Q2

αQ

−αQ(α + Q)

α2 Q2



. (19)

The symmetry boundary condition φ′(0) = φ′′′(0) = 0 can be
expressed with the new variables as

Ds(α,ω) = η̃5(0) = 0, (20)

which has to be satisfied via the determination of the proper
eigenvalue pairs. This calculation will be described in Sec. II D.
Finally, the original φ(y) eigenfunctions can be obtained from
the following equation:18

η1φ
′′ − η2φ

′ + η4φ = 0. (21)

C. WKJB approximation

The previous solution techniques seek the solution in
the simple waveform (1). This form can be extended with
further terms in the WKJB approximation. The method was
adapted to the linearized Navier-Stokes equations by Garg.10

He added only one further term, which leads to the solution
form

ψ̃WKJB(x, y, t) = (C0Φ(y, x1))ei ∫ (α0+εα1)dx−iωt , (22)

where ψ̃WKJB is the stream function of the disturbance field
and Φ is its eigenfunction. Here, only the necessary formu-
lae are presented, the derivation can be found in the original
work. ε is a small dimensionless parameter characterising the
non-parallel nature of the basic flow. It expresses the ratio
of slow scales x1 (the streamwise variation of basic flow)
and the fast scales x (propagation of the disturbance wave).
ε = 0 corresponds to a fully parallel mean flow and the
method leads to the Orr-Sommerfeld equation. The stream-
wise variation of free shear flows10 (jets and boundary layers)
ε = 1/

√
Re.

Φ and α0 may be obtained from the solution of the Orr-
Sommerfeld equation at each axial location as if the basic
flow were parallel. They are the same as those in the previous
case. Although the Orr-Sommerfeld equation was solved for
the transversal velocity component before, it does not cause
any problem since

ũic,y(x, y, t) = −
∂ψ̃(x, y, t)

∂x
= −αψ̃(x, y, t). (23)

This means that the two variables and equations can be trans-
formed into each other by a linear transformation. Hence, the
eigenvalues are the same for both cases, while the eigenmodes
differ only by a constant multiplier which can be taken into
account through C0.

Here, α1 should be calculated to improve the accuracy of
the Orr-Sommerfeld method that can be determined from the
following relations:

α1 =
ã2(x1)
ĩa1(x1)

, (24)

where

ã1(x1) = −
∫

D
(b1φ + b2φ

′′)φ†dy, (25)

ã2(x1) =
∫

D

(
(b1 + U ′′)φ† + 2U ′φ†

′
+ b2φ

†′′
) ∂φ

∂x1

+
∫

D

(
(b4φ − 2iφ′′/Re)

dα0

dx1
+ b3φ

′ + Vφ′′′
)
φ†dy,

(26)

b1 = 2α0ω − 3Uα2
0 − U ′′ + 4iα3

0/Re, (27)

b2 = U − 4iα0/Re, (28)

b3 = −V ′′ − α2
0V , (29)

b4 = ω − 3α0U + 6iα2
0/Re, (30)

and φ† is the eigenfunction of the solution of the adjoint prob-
lem. It can be calculated similarly to the eigenfunction of
the original OS problem with the CMM method shown in
Sec. II B. Only the coefficients will differ in (17) accord-
ing to

a†1 = 0, (31)

a†2 = 2α2 + i Re(αU − ω), (32)

a†3 = 2i Re αU ′, (33)

a†4 = −(α4 + αRe (−iαω + iα2U)). (34)

Furthermore, the eigenvalues of the Orr-Sommerfeld
equation and those of the adjoint problem are the same for a
spatial problem, thus only the eigenfunction should be recalcu-
lated. In Sec. V, the various solutions will be compared, based
on the amplitude of fluctuating transversal velocity along the
centerline. For the WKJB method, it can be calculated from
the streamfunction as

ũWKJB,y = −
∂ψ̃WKJB

∂x1
=

= C0

(
ε
∂φ

∂x1
+ (α0 + εα1)φ

)
ei ∫ (α0+εα1)dx−iωt . (35)
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D. Numerical procedures

The differential equations [(13), (18), and (21)] were
solved by the Runge-Kutta-Cash-Karp method with an adap-
tive step size technique where the tolerated absolute and
relative errors were set to 10�10. This low value was neces-
sary to solve the dispersion relation with the proper accuracy
(10�6). That was done by the Matlab built-in fsolve function
which can handle non-linear complex-valued functions. The
determination of the first eigenvalue is a challenging task;
the dispersion relation was evaluated on complex α plane
with a fine resolution at ω = 0.1 and then the intersections
of DRe = 0 and DIm = 0 were determined, where DRe and
DIm are the real and imaginary parts of the dispersion rela-
tion, respectively. The eigenvalues were ordered according to
the decreasing imaginary part of α. In the next step, x or ω
was changed slightly and it was assumed that the eigenvalue
changed only a little so that the solution procedure to ful-
fill the dispersion relation was initialized with the previously
calculated α value. In the last case when the linear stability
equations were solved with WKJB approximation, the inte-
grals were evaluated using the trapezoidal rule of numerical
integration.

III. MODELING ACOUSTICALLY EXCITED FLOWS

In many experiments, the jet is acoustically excited. The
investigation of such configurations is numerically very diffi-
cult without the separation of the acoustic and hydrodynamic
fields because the length scale of the acoustic wave is much
larger than that of the hydrodynamic waves. This makes it dif-
ficult or impossible to create an optimum grid for numerical
computations. The other problem is the different characteristic
magnitude of the amplitudes of the perturbation. The typical
amplitude of the pressure perturbation in acoustics is in the
20 µPa (0 dB)–200 mPa (100 dB) range, while in the hydrody-
namic field, the typical pressure variation is around 1–100 Pa.
Differences of a similar order of magnitude appear between the
acoustic particle velocity and typical hydrodynamic velocity
fluctuations.

In this section, a technique is presented to treat the excita-
tion of an incompressible flow with a known acoustic field. One
way coupling is assumed, meaning that the rotational hydro-
dynamic field (with a vector potential, solenoid) has no effect
on the acoustic field (with a scalar potential, irrotational). Fur-
thermore, the acoustic field is supposed to be described by
the linear acoustic wave equation. The governing equations
of compressible and incompressible flows are compared with
each other with the aim to obtain the full velocity field (acous-
tic and hydrodynamic) in an incompressible simulation with
the help of extra terms. The acoustic field is assumed to be
known and to fulfill the governing equations by itself. The idea
is similar to the Lighthill analogy, where the hydrodynamic
pressure field is reproduced in an acoustic simulation but here
we do exactly the opposite. Here, the acoustic pressure and
its effects are reproduced in a hydrodynamic simulation. This
way, the flow disturbed by an acoustic wave can be simulated
in a unified framework.

The method is validated by compressible and incompress-
ible CFD computations in which an acoustic wave passes over

a no-slip wall. Our goal is to integrate the acoustic excitation
into an incompressible flow simulation.

A. Modification of the continuity equation

The continuity equation in the general form is

∂ρ

∂ t̂
+ ∇ · (ρû) = 0, (36)

where ρ is the density, t̂ is the dimensional time, and û is the
dimensional velocity vector. Let us decompose the variables
into acoustic (ac) and hydrodynamic (ic) part as

ρ = ρic + ρac, (37)

û = ûic + ûac. (38)

The mean value of the acoustic variables is zero, while the
incompressible density has no fluctuating part (ρic = ρ0). After
substitution (37) and (38) into (36), the following equation is
obtained:

∂ρac

∂ t̂
+ ρ0∇ · (ûic + ûac),

+ρac∇· (ûic + ûac) + (ûic + ûac) · ∇ρac = 0. (39)

During an incompressible fluid flow simulation, the following
equation

ρ0∇ · û = Sc (40)

can be solved. Our task is to determine the Sc term, which
substitutes the acoustic field. The term on the left-hand side
(LHS) is equivalent to the second term in (39) and the further
terms in (39) should be included in Sc,

Sc = −
∂ρac

∂ t̂
− ρac∇ · (ûic + ûac) − (ûic + ûac) · ∇ρac. (41)

Equation (41) can be further simplified. The incompressible
velocity is divergence-free (∇ · ûic = 0). The term ρac∇ · ûac

is a product of two small quantities which can be neglected if
the acoustic field is assumed to be small. Two terms remain

Sc u −
∂ρac

∂ t̂
− û · ∇ρac. (42)

Let us analyze the magnitude of the quantities. The first term
scales as ρac/T = ρc0/λ, where T is the period time, c0 is the
speed of sound, and λ is the wavelength. The second term can
be written as

(ûic + ûac) · ∇ρac = ûic · ∇ρac + ûac · ∇ρac, (43)

where the first terms scales as ρu0/λ and the second term is the
product of two small quantities and can be neglected. u0 is a
typical speed of the flow. If

u0

c0
= Ma � 1, (44)

then the second term in Eq. (42) is negligible. Finally, the
extra term for the continuity equation at low Mach-numbers
becomes

Sc u −
∂ρac

∂ t̂
. (45)

Of course, Eq. (42) can also be implemented in most commer-
cial software but the application of the approximation (45) is
computationally more effective.
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It is convenient to express (45) by the acoustic veloc-
ity. It was assumed that the acoustic field by itself fulfills the
governing equations including the continuity equation

∂ρac

∂ t̂
+ ρ0∇ · ûac = 0 (46)

and

Sc u −
∂ρac

∂ t̂
= ρ0∇ · ûac. (47)

B. Modification of the momentum equation

The general momentum equation is in the case of a
Newtonian fluid

ρ
Dû
Dt̂
= ρg − ∇(p +

2
3
µ∇ · û) +∇ ·

[
µ
(
∇ ⊗ û + (∇ ⊗ û)T

)]
,

(48)

where D
Dt is the total derivative with respect to time, p is the

dimensional pressure, and µ is the dynamic viscosity.
The following equation is implemented generally in an

incompressible fluid simulation solver if the viscosity is
constant:

ρ0
Dû
Dt̂
= ρg − ∇p + µ∆û + Sm. (49)

The difference between the two equations [the terms missing
from (49)] should be included in the term (Sm), that is,

Sm = −ρac
Dû
Dt̂

+ f (µ), (50)

where f (µ) contains the terms involving viscosity and assumed
to be small since they are associated with bulk viscosity and
to the temperature-related viscosity variation. The first term is
also expected to be small since ρac � ρ0 and is also neglected
in linear acoustics,

Sm ≈ 0. (51)

The full velocity field can be reconstructed by this approach in
an incompressible simulation. Note that while the extra term
(47) was prescribed within the domain, the boundary con-
ditions for the compressible simulation represented the sum
of the hydrodynamic and acoustic terms. The careful reader
might wonder why we neglected the derived extra term in the
momentum equation and did not neglect it in the continuity
equation, although the two terms are of similar order of mag-
nitude. The answer is the recognition that in the continuity
equation this term is non-negligible compared with the zero
on the right hand side, while in the momentum equation, it is
negligible compared with the O(1) term standing on the right
hand side. Numerical calculations confirmed the correctness
of this derivation.

C. Application test: Acoustic wave a near
a no-slip wall

The previously derived technique was tested on a case,
where an acoustic wave passes along a wall. The problem was
solved by compressible and incompressible numerical simula-
tions and they are compared to an analytical solution15 which is

ûac = uac,0ei(ω̂t̂−α̂x̂), (52)

ûic = −uac,0 e−ŷ/δac ei(ω̂t̂−α̂x̂−ŷ/δac), (53)

δac =

√
2ν
ω̂

, (54)

where ûac,0 is the amplitude of the acoustic wave, δac is the
thickness of the acoustic boundary layer (known as viscous
penetration depth or skin depth), ω̂ is the circular frequency,
α̂ is the wave number, ν is the kinematic viscosity, x̂ is the
direction of wave propagation, and ŷ is the normal co-ordinate
to the wall [Fig. (1)], both co-ordinates are dimensional.

The numerical simulations were carried out in ANSYS
CFX 16.2 assuming both compressibility and incompress-
ibility. Two different boundary condition configurations were
tested. In the first case, fluctuating velocity inlet boundary con-
dition was applied at the left end of the channel and the pressure
was prescribed at the other end. This configuration is more
robust and the mesh dependence study and the comparison
of incompressible and compressible simulations were carried
out on this configuration. However, the prescribed fluctuating
velocity enforces the proper amplitude in the full domain that
makes it hard to investigate whether the derived equations are
correct. Only the phase delay of fluctuation along the channel
can be checked which is 0 in an incompressible simulation
without the extra terms and non-zero in a compressible case.
In the second case, prescribed fluctuating pressure boundary
condition was applied at both ends. This configuration is sim-
ilar to the excited jet considered in Sec. IV B and the effect
of the previously derived extra terms can be investigated here.
However, this configuration is numerically less robust. The
further boundary conditions were the same and are shown in
Fig. 1. At the bottom of the domain a no-slip wall, while at the
top symmetry boundary condition was prescribed.

In the first case, the velocity inlet condition was a time-
periodic function defined as

ûinlet,x(ŷ, t̂) = Au sin(ω̂t̂), (55)

where ûx denotes the velocity component in the x-direction
and Au is the amplitude of the excitation. The further velocity
components are zeros. The prescribed relative static pressure1

was set to 0 Pa. The main parameters of the simulation and
mesh can be found in Table II.

The compressible and incompressible simulations were
carried out with this configuration. The only difference
between the two simulations was that in the incompressible

FIG. 1. The mesh for the investigation of the acoustic boundary layer and the
boundary conditions.
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TABLE II. The main parameters of the CFD simulations of the acoustic wave
along a wall.

Name Value

Length of the domain (l) 0.6 (m)
Height of the domain (h) 0.8 (mm)
Streamwise element size (dx) 0.4 (mm)
Transversal element size at the wall (dymin) 0.002 (mm)
Transversal element size far from the wall (dymax) 0.021 (mm)
Density 1.185 (kg/m3)
Reference temperature 25 (◦C)
Speed of sound (c) 346.2 (m/s)
Circular frequency of the sound wave (ω̂) 5 000 (rad/s)
Wave number of the sound wave (α̂) 14.42 (m�1)
Skin depth (δ) 0.078 74 (mm)
Turbulence model Laminar flow was

assumed

FIG. 2. The velocity profiles of the acoustic boundary layer along the ŷ co-
ordinate calculated in three different ways (with velocity inlet BC): with
compressible, incompressible simulation (with extra term), and analytically
in four different phases: (a) 0.61 rad; (b) 1.5 rad; (c) 2.7 rad; (d) 3.3 rad.

case, we included the previously derived extra term in the con-
tinuity equation. The velocity field was evaluated at a cross
section in the transversal direction (x̂ =)0.3 m far from the
inlet boundary. In Fig. 2, a very good agreement can be seen
in all cases at every phase. The normalized root mean squared

deviation was calculated for the plotted phases as

NRMSDu B

√∑n
i=1(ûanal,x(ŷi) − ûCFD,x(ŷi))2

n
1

Au
, (56)

where ûanal is the analytic solution and ûCFD is the numerical
one. The NRMSD was around 0.02 in both simulations at all
evaluated phases. Thus, the derived method above proved to be
sufficient not only to generate the proper acoustic wave but also
to reproduce the acoustic boundary layer in an incompress-
ible simulation! With the help of this formula, the interaction
between a hydrodynamic field and a known acoustic field can
be investigated even in more complex cases in a single incom-
pressible simulation, such as the acoustically excited jet, when
an accurate compressible simulation cannot be carried out.
(There are issues with non-reflective boundary conditions in
the case compressible simulations, and the different scales also
cause problems.)

1. Necessary grid resolution for the acoustic
boundary layer

The necessary resolution of the acoustic boundary layer
was also investigated. The number of elements in the y direc-
tion was varied between 34 and 100. The progression of their
size was set to 1.025 in all cases. The results were compared
with the analytical solution. A short phase delay was observed
around 0.15 (rad). In order to handle this issue, a phase delay
parameter was added to (52) and (53), and it was fitted to the
numerical results. The largest difference between the analyt-
ical formula and the numerical results was normalized with
the amplitude of excitation (u0). The result can be found in
Table III. The boundary layer should be resolved by about 20
elements if we want to keep the maximum error below 3%.
At the same time, the root mean squared deviation decreased
continuously with the size of mesh elements.

2. The effect of the length of the domain
on the results

The effect of the length of the domain was carried out
on the second configuration, where pressure was prescribed at
both ends as

p̂left(ŷ, t̂) = ρ0cAu sin(ω̂t̂), (57)

p̂right(ŷ, t̂) = ρ0cAu sin(ω̂t̂ − α̂l). (58)

The length of the domain was set to l = {0.01, 0.1, 0.435,
0.74, 1} m with dx = 1 mm and the number of elements in
the y direction was 75. Further parameters were the same as
before. When the length of the domain is decreased and the
extra term in the continuity equation was present, the accuracy

TABLE III. The comparison of the various meshes.

Case 1 2 3 4

Number of elements 100 75 54 34
Transversal element size at the wall (dymin) (mm) 0.002 0.0038 0.0074 0.0159
Resolution of boundary layer (δ/dymin) 41.4 20.5 10.6 5.0
Normalized relative maximum difference (%) 2.32 2.63 3.45 5.82
NRMSDu 0.0009 0.0012 0.0016 0.0027
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FIG. 3. (a) The velocity profile of the acoustic boundary layer along the ŷ co-
ordinate in the phase 0.873 rad (l = 1 m). Analytical solution: dashed line, the
incompressible simulation with the extra term (continuous line) and without
the extra term (dashed-dotted line). (b) The normalized rms error compared to
the analytic solution with (continuous line) and without (dashed-dotted line)
the extra terms in the continuity equation.

of the simulation remained between 2% and 4% [Fig. 3(b)].
When this term was omitted, the error of the simulation was
extremely high if l/λ > 1. However, it was just 7.5% for
l/λ = 0.23 and 2% for l/λ = 0.023. This shows that, if the
problem is acoustically compact (l/λ � 1), then the acoustic
excitation can be modeled through boundary conditions even
without the extra term. The reason for this is the phase delay
in a compact configuration negligible, and thus the extra term
has no significant effect on the simulation.

IV. THE CFD SIMULATIONS OF THE JET
A. The CFD simulation of the basic flow

The basic flow field of the plane jet was obtained with
a steady 2D CFD simulation carried out with ANSYS CFX
16.2. The nozzle and the initial part of the jet were modeled
in a half domain in order to avoid the spontaneous emergence
of instability waves and to obtain faster convergence. In this
way, the basic flow can be obtained even at larger Reynolds-
numbers with the halved number of cells. The geometry, the
mesh, and the boundary conditions are presented in Fig. 4.
The nozzle length (ln) was 7 mm, while its width (δn) was
1 mm (here only the half nozzle is shown because of sym-
metry). The length of the remaining domain (l) was 60 mm,
and its height (h/2) was 25 mm. The mesh size was refined
in 5 steps. The half nozzle was resolved with nhalf = 10, 20,
40, 60, 80 elements [∆y = δn/(2nhalf )] and above it the size
of the elements was increased continuously with a quotient

FIG. 4. The mesh and the boundary condition for the simulation of the basic
flow.

TABLE IV. The main parameters of the CFD simulations of the basic flow.

Name Value

Length of the domain (l) 60 (mm)
Length of the nozzle (ln) 7 (mm)
Height of the half domain (h/2) 25 (mm)
Width of the nozzle (δn) 1 (mm)
Density (ρ) 1.185 (kg/m3)
Viscosity (ν) 1.545 × 10−5 m2/s
Turbulence model Laminar flow was assumed

1.03. At the nozzle, the other size of the cells was the same
(∆x = ∆y) and it was increased in both negative and posi-
tive directions with a quotient 1.01. At the nozzle left end,
a parabolic velocity profile was prescribed. Its maximum
was varied in order to obtain the basic flow at different
Reynolds-numbers defined as

Re =
Ûmeanδn

ν
, (59)

where Ûmean is the mean velocity of the parabolic profile
and ν = 1.545 × 10−5 m2/s is the kinematic viscosity. This
definition also determines the length and time scales. The
relation between dimensional (denoted with hat) and non-
dimensional co-ordinates, wave number, angular frequency
and time is

x̂ = δnx, α̂ =
α

δn
, ω̂ =

ωÛmean

δn
, t̂ = t

δn

Ûmean
. (60)

The Reynolds-number was varied between 50 and 2000.
Below these values, the edge-tone phenomenon is not
observed, and above this range, the parabolic profile assump-
tion in the nozzle is uncertain since it becomes unstable. At
the nozzle wall and at the front wall, a no-slip wall boundary
condition was prescribed, while at the centerline, symmetry
boundary condition was applied. Opening boundaries were
applied (see Fig. 4) at the remaining surfaces. Further settings
are summarized in Table IV.

The mesh dependence study was carried out at each
Reynolds-number. The imaginary part of α (αi), which was
calculated using the OS equation, was used for comparison at
ω = 0.5. The aim was that the maximum relative difference
compared always to the finest grid at each location gets below

FIG. 5. The configuration of acoustically excited jet.
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TABLE V. The parameters of the CFD simulations of the acoustically excited jet at various Reynolds-numbers.

Re 50 100 300 1000

Ûmean (m/s) 0.7725 1.545 4.635 15.45
Mach-number 2.23 × 10−3 4.46 × 10−3 1.34 × 10−2 4.46 × 10−2

Time step (dt) (s) 2 × 10�4 1 × 10�4 3 × 10�5 1 × 10�5

Angular freq. of exc.(ω) (rad/s) 386.6 773.2 2320 7732
Wavelength of excitation (λ) (m) 5.626 2.813 0.9377 0.2813
Turbulence model Laminar Laminar Various k-ω
Skin depth of ac. wave (mm) 0.283 0.2 0.115 0.0632

1%. The outcome of this procedure was that the sufficient res-
olution of the orifice is nhalf = {40, 40, 60, 60, 60} at Re {50,
100, 300, 1000, 2000}.

B. The CFD simulation of the acoustically
excited flow

As the next step, the acoustic excitation model was applied
to the planar jet. Its configuration can be seen in Fig. 5. The jet
flows in the x direction, while it is excited with transversally
propagating acoustic waves. The geometry and the mesh were
similar to the case of the basic flow simulation but here the full
domain was modeled. Furthermore, the mesh parameter was
set to n = 20, 40, 60 to investigate the effect of mesh resolution
on the results. The Reynolds-number here was varied between
50 and 1000 but at 300 and above, the spontaneously devel-
oping unstable flow structures conceal the effect of excitation
and the results cannot be evaluated with appropriate accuracy.
Various turbulence models (k-ε, k-ω, shear stress transport1)
were applied and tested to reduce this effect at Re = 300.
This comparison will be shown later. The boundary conditions
were also prescribed similarly to the unexcited case, only the
pressure fluctuation was added to the “opening” boundaries.
Further parameters can be found in Table V. The excitation
was modeled as described in Sec. III with the differences that
the acoustic wave propagated in the y direction and the pres-
sure fluctuation was prescribed at the top and bottom of the
domain. The Strouhal-number of the excitation was 0.5 in each
case, while the particle velocity of the acoustic wave was set to
uac ,0 = 0.0001 m/s.

The results were evaluated at monitor points placed along
the centerline of the jet at every node and there the transversal
velocity was recorded. A Fourier transformation was applied
to the signals by Matlab 2017a, and the amplitude and the

phase delay were calculated at each location. The mesh depen-
dence study was carried out based on these values at Re = 100.
The amplitudes of these signals were compared with each
other at the excitation frequency presented in Fig. 6(a). The
curves cover each other, meaning that the results are in this
range mesh-independent. The amplitudes were {7.333, 7.469,
7.513}mm/s with the nozzle resolution: n = 20, 40, 60, respec-
tively, at the location x = x̂/δn = 10. The relative difference
was only 2.44% between the coarsest and finest grid and 0.59%
between the medium and the finest grid. The same investiga-
tion was carried out at Re = 300. Unfortunately, in this case,
the strong oscillation at other frequencies ruined the simulation
and different solutions were obtained with different mesh reso-
lutions. In this case, various turbulence models were tested and
all of them solved the problem but the signal amplitudes were
different in every case. The results can be seen in Fig. 6(b).
The amplitude of the transversal velocity in the case of the
laminar model on the coarse grid was the highest and it was in
the same range for k-ω and shear stress transport turbulence
models. At the same time, the k-ε turbulence model filtered
out the oscillation and the calculated amplitude was more than
one order of magnitude lower than in the other cases. It is dif-
ficult to determine which model provides the most accurate
result; for further comparison, the k-ω turbulence model was
selected.

V. RESULTS AND DISCUSSION

First, a hitherto unreported “strange” mode was found
close to the flue channel using the OS equation. Its growth rate
and phase speed are extremely high and it exists only there.
Its phase speed tends to infinity and finally it disappears at
x ≈ 1. The existence of this mode can explain the high phase

FIG. 6. The amplitude of the transversal velocity along
the centerline of the jet at ω = 0.5 (a) Re = 100 obtained
with different mesh resolutions (n = {20, 40, 60})
(b) Re = 300 with various turbulence models.
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FIG. 7. The growth rate of the transversal velocity component along the
centerline of the excited jet at St = 0.5, Re = 100.

speed found by Vaik et al.28 during their numerical simula-
tion. The growth rate of this mode and that of the “classical”
mode, which exists also far downstream and is the most unsta-
ble one there, were compared to the CFD results in Fig. 7 at
Re = 100. It can be seen that the growth rate calculated by
the CFD simulations is between the two modes implying that
the oscillation is the superposition of these two modes. Of
course, the acoustic wave also excites the flow there, which
makes higher growth rates than those calculated with the nat-
ural modes. (Since these modes are the eigenmodes and the
excitation process was not taken into account.) The origin of
this “strange” mode is unclear. If it is not caused by the numer-
ical procedure and this mode emerges in real experiments, it
can make hard to carry out measurements close to the ori-
fice. Fortunately, this mode does not cause any problem in
the modeling of the jet in the downstream region since these
modes do not interact with each other if the linear assumption
is valid and the strange mode exists only in the vicinity of the
orifice.

Next, the reduced order models (Rayleigh, OS, BG,
WKJB) were compared with the CFD results. The ampli-
tudes and the phase delays of the fluctuating velocity along
the centerline were compared to each other in all cases. These
variables were selected for further comparison because they
can be determined from the CFD simulation and they can be
easily calculated from the eigenmodes by integration. If the
growth rate or the phase speed variables had been selected for
comparison, the numerical derivative would have had to be
evaluated, leading to larger numerical errors. The unknown
C0 parameter in the eigenmodes was determined from the
CFD results at x̂/δ = 1.5 since upstream of that point the
previously described “strange” mode makes the comparison
difficult. Adjoint modes can help there but they will be the
topic of further research.

The amplitude of the signal at the lowest Reynolds-
number can be seen in Fig. 8(a). The results provided by the
WKJB approximation are the closest to the CFD simulation,
while the BG and OS models slightly underestimate the ampli-
tude of the oscillation. If the Reynolds-number is increased
from 50 to 100 [Figs. 8(a) and 8(b)], the difference between the
results of the WKJB approximation and OS equation vanishes,

FIG. 8. The amplitude of the transversal velocity component along the cen-
terline of the excited jet at St = 0.5 (a) Re = 50, (b) Re = 100, (c) Re = 300,
(d) Re = 1000.

which holds for larger Reynolds-numbers, too. This was the
expected result since the ε = 1/

√
Re. Thus the extra computa-

tional effort to obtain the α1 correction terms is unnecessary
for Re ≥ 100 and it has only a minor effect even below this
value. At the same time, the BG model everywhere under-
estimates the growth rate compared to the others at Re = 50.
In the case of Re = 100, the agreement is the best between
this model and the CFD simulation. However, the difference
between the models is small and according to our experience
to solve the BG differential equation takes one order of magni-
tude more time than the OS equation. Furthermore, this model
is inconsistent since it neglects the streamwise variation of
the mean flow but takes into account the transversal velocity
component of the basic flow. Therefore, this method is not
recommended.

The Rayleigh equation predicts much stronger oscilla-
tion at Re = 50 and 100, indicating that the viscosity plays
an important role at low Reynolds-numbers. If the Reynolds-
number further increased (Re ≥ 300), the difference between
the result provided by the Rayleigh and OS models becomes
negligible. This conclusion was drawn by Curle6 for the Bick-
ley profile who suggests Re ≥ 200 for the inviscid domain. In
this range, the k-ω turbulence model was applied in the CFD
simulation which damped all the stray oscillations compared
to the laminar case [Fig. 6(b)] and probably underestimates
the magnitude of the oscillation.

Summarizing our conclusions about the amplitude, in the
low Reynolds-number (50 ≤ Re < 300) range, the Orr-
Sommerfeld equation is recommended since it is the second
simplest method behind the Rayleigh equation and provides
acceptable results. Above this regime (Re ≥ 300), the appli-
cation of the Rayleigh equation is sufficient since it is compu-
tationally cheap and provides accurate results according to the
experiments of Nolle.19 No benefits are brought by the more
advanced two methods.
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FIG. 9. The phase delay of the transversal velocity wave component along
the centerline of the excited jet at St = 0.5 (a) Re = 50, (b) Re = 100,
(c) Re = 300, (d) Re = 1000.

If the phase delay of the disturbance wave, whose spatial
derivative is proportional to the phase velocity, is investigated,
the results are surprising (Fig. 9). The phase delay is very
well predicted by the Rayleigh equation when compared to the
CFD simulations at Re = {50, 100}. Above those Reynolds-
numbers, the results of the CFD simulations are questionable
and the difference between the outcome of the different models
vanishes. It is also remarkable that the phase delay is larger
(the phase speed is smaller) in the models where viscosity was
taken into account and the turbulence model further magnifies
this difference [Fig. 9(d)].

A polynomial surface was fitted to the real and imaginary
parts of the wave numbers at all Reynolds-numbers to approxi-
mate the growth rate and the phase speed better than the widely
used values such as the non-dimensional phase speed being
0.5 and the growth rate being equal to the wave number. This
procedure is shown in the Appendix.

Finally, the effect of the wall around the nozzle was inves-
tigated. Our original theory was at the beginning of the research
that the different lengths and time scales of acoustic and hydro-
dynamic fields render a direct excitation impossible. Our idea
was that the acoustic wave passes over the wall and generates
vorticity whose length scale is comparable to the hydrody-
namic field. This field can excite the jet. In order to test our
theory, the wall around the nozzle (that is perpendicular to the
jet) is switched from “no-slip wall” to “free slip wall.” This
setting prevents the development of the aforementioned hydro-
dynamic field and the excitation should become less effective.
The comparison of the two cases can be seen in Fig. 10(a).
The results clearly show that the change of boundary condi-
tions has only a minor effect on the results. The amplitude was
a bit larger in the case of a no-slip wall suggesting that the gen-
erated vorticity field also contributes to the excitation of the
jet, but this effect is not as strong as originally assumed. The
difference develops at the initial region since the growth rate
of the transversal velocity was 10% larger close to the orifice

FIG. 10. The amplitude of the transversal velocity component (a) and its
growth rate (b) along the centerline of the excited jet at St = 0.5, Re = 100
and the wall around the nozzle was switched from “no slip wall” to “free slip
wall.”

(x < 0.5), but the growth rate values are almost the same in
the downstream region (x > 1).

VI. CONCLUSIONS

A unified treatment of the flow and the acoustic exci-
tation within an incompressible solver framework was pre-
sented and tested. It turned out that the vorticity, generated
by the nozzle wall, plays only a minor role in the excita-
tion process. Four different approaches, namely, the Rayleigh,
the OS, BG equations, and the WKJB approximation, were
implemented to predict the amplitude and the phase delay
of the transversal velocity oscillation. The results show that
the widely used Orr-Sommerfeld and Rayleigh equations are
sufficient and the more sophisticated BG and WKJB meth-
ods provide no tangible benefit. The application of the OS
equation is recommended below Re = 300 while that of the
Rayleigh equation above this value. The latter one predicts
both the growth rate and the phase velocity very well, inde-
pendently of Re. A new instability mode existing only in the
vicinity of the nozzle with extremely high growth rate was
discovered.
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APPENDIX: POLYNOMIAL FIT OF THE WAVE-NUMBER

The specific velocity and length scale of the jet change
in the downstream direction and they also influence on the
angular frequency. The model can be improved if this effect is
compensated. Jo and Kim14 found that the velocity distribu-
tion in the jet can be well described with ξ = x/Re. According
to the self-similar solution of the Bickley-jet, the maximum
velocity changes with (ξ + ξ0)�1/3 and the local length scale
with (ξ + ξ0)2/3 meaning that the local time scale is propor-
tional to (ξ + ξ0). ξ0 is the location of virtual origin of the
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TABLE VI. The coefficients of the fitted surface [Eq. (A1)] for real and imaginary parts of the wave number calculated with the Orr-Sommerfeld equation at
different Reynolds-numbers.

Coefficients <(αL) Re = 50 =(αL) Re = 50 <(αL) Re = 100 =(αL) Re = 100 <(αL) Re = 300 =(αL) Re = 300

p00 0.014 798 1 �0.040 101 0.010 352 9 �0.017 536 4 0.011 753 �0.013 998
p10 �0.08 805 84 �0.217 614 �0.054 342 2 �0.012 022 2 �0.512 052 0.133 51
p01 8.223 42 �2.355 27 6.812 23 �5.968 33 4.913 47 �5.258 6
p20 0.430 186 0.287 073 0.177 671 0.100 235 8.741 94 �1.494 52
p11 0.376 817 8.144 88 �5.152 42 4.423 75 90.632 3 �46.642 1
p02 �78.376 9 57.518 6 �31.565 4 180.715 �26.085 2 136.266
p21 �17.214 5 �3.339 56 28.934 5 �5.740 55 �1 763.79 772.198
p12 33.020 3 �137.659 20.236 2 �106.509 �2 704.81 4 156.18
p03 472.376 �393.341 �105.133 �2 199.66 1 726.83 �2 894.19
p22 201.192 20.330 2 �401.298 �341.553 68 477 �71 266.4
p13 �441.781 852.38 719.065 1 504.2 �2 102.09 �46 204.1
p04 �1 240.95 988.778 1 640.12 12 040.4 �28 351.9 38 834.4
p23 �661.731 �55.238 1 050.24 4 650.61 �698 978 1.073 78 × 106

p14 1 458.43 �1 669.32 �3 749.41 �10 592.7 403 424 �302 179
p05 912.449 �625.732 �3 865.88 �2 213 4 80 721.6 �101 640

Max error 0.072 472 9 0.057 632 4 0.025 543 3 0.027 425 8 0.039 753 4 0.046 329 9
Rms error 0.005 393 27 0.016 833 9 0.006 623 98 0.008 157 95 0.005 366 38 0.006 584 25

jet and it is found to be 0.033 based on fit curves to the local
length and velocity scales. The same value was suggested by
Jo and Kim.14 In order to account for the effects of the vari-
ation of local length and time scales, it is more convenient
to give the approximation αL = (ξ + ξ0)2/3α as a function of
ωL =ω(ξ + ξ0) instead ofα as a function ofω. TheαL(Re,ξ,ωL)
function was approximated by a polynomial surface by Mat-
lab fit function at different Reynolds-numbers. The data were
taken from the following domain ω ∈ [0.005, 1], x ∈ [1, 15]
and the spatial resolution was taken from CFD simulation and
the resolution of ω was selected a way that the maximum
relative difference between the two results is less than 2.5%.
The order of the polynomial varied between 1 and 5. The
most economic fit was achieved when the maximum order

of ξ was 2 and that of ωL was 5 meaning the surface is
described as

αL(ξ,ωL) = p00 + p10ξ + p01ωL + p20ξ
2

+ p11ξωL + p02ω
2
L + p21ξ

2ωL + p12ξω
2
L

+ p03ω
3
L + p22ξ

2ω2
L + p13ξω

3
L + p04ω

4
L

+ p23ξ
2ω3

L + p14ξω
4
L + p05ω

5
L. (A1)

The coefficients are presented in Tables VI and VII also with
the maxima and root-mean-square of the difference between
the calculated and the fitted values. The maximum error was
around 0.05, while the rms difference was below 0.01 almost
in all cases.

TABLE VII. The coefficients of the fitted surface [Eq. (A1)] for real and imaginary parts of the wave number calculated with the Rayleigh equation at different
Reynolds-numbers.

Coefficients <(αL) Re = 300 =(αL) Re = 300 <(αL)Re = 103 =(αL)Re = 103 <(αL) Re = 2000 =(αL) Re = 2000

p00 0.004 518 9 �0.006 381 69 0.000 212 36 �0.005 570 49 0.000 569 257 �0.004 110 56
p10 �0.228 346 0.080 748 3 0.243 35 0.329 383 0.298 916 0.203 839
p01 4.379 28 �5.531 51 6.325 78 �6.358 69 6.303 88 �6.980 15
p20 4.761 93 �1.062 38 �13.419 8 �15.637 6 �30.473 1 �13.442 7
p11 92.058 9 �45.399 8 �43.166 6 �117.885 �24.240 2 �76.009 5
p02 �16.296 3 128.466 �254.01 314.609 �280.411 417.373
p21 �1 740.07 779.375 3 650.51 5 598.04 5 602.83 4 001.58
p12 �2 322.15 4 787.45 10 494.8 10 063.4 11 305.9 7 774.63
p03 1 625.86 �2 948.91 12 313.2 �15 334.9 15 103.4 �22 408.8
p22 59 875.5 �83 157.6 �619 508 �421 109 �1.191 87 × 106

�212 358
p13 �8 339.17 �52 055.3 �134 514 �132 488 �46 066.4 �168 354
p04 �26 584.4 42 493.5 �274 361 366 853 �385 052 590 352
p23 �512 855 1.273 71 × 106 1.205 16 × 107 4.197 87 × 106 1.842 31 × 107

�6.105 3 × 106

p14 333 124 �385 966 �1.966 01 × 106 998 968 �3.396 59 × 106 4.667 98 × 106

p05 89 834 �105 818 2.510 77 × 106
�3.257 7 × 106 3.891 47 × 106

�5.964 49 × 106

Max error 0.045 945 8 0.062 647 1 0.034 607 0.022 839 3 0.020 349 5 0.007 738 63
Rms error 0.006 566 41 0.007 377 99 0.003 872 05 0.003 476 74 0.002 871 52 0.003 430 19
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